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Executive Summary

This report has two specific aims. First to describe a general statisti-
cal strategy for ground-water detection monitoring that is applicable at the
USPCI/Laidlaw Grassy Mountain Facility and second, to apply this method-
ology to existing data at the facility. The methodology is first described in
considerable detail, appropriately referenced to both the scientific literature
and USEPA regulation and guidance and then applied to existing data at
the facility. For completeness we describe appropriate statistical methodolo-
gies for both inter-well (i.e., upgradient versus downgradient) and intra-well
comparisons.

There were several exceedances of upgradient limits for manganese, two for
sulfide and two for TSS. The absence of clear historical trends in these wells
for these constituents and the absence of VOCs suggest that these differences
are due to spatial variability and not an impact from the site. Indeed, there
is considerable spatial variability in manganese levels among the four upgra-
dient wells (see Table 1 Appendix A). Intra-well comparisons revealed a single
verified exceedance of manganese in well W39 which is also above upgradient
limits. Three values have exceeded control limits and are awaiting verification
(manganese in W2 and sulfide in W40A and W9). In light of these results,
intra-well comparisons are recommended for routine monitoring at this facility.
Statistical power analysis based on site specific conditions indicate that the
current site-wide false positive rate is much too high (approximately an 80%
chance of a verified exceedance of at least one out of 1220 statistical compar-
isons). To reduce this false positive rate to a reasonable level, a minimum of
8 background samples in each well are required and the number of statistical
comparisons should be reduced. The best way to accomplish the latter goal is
to reduce the number of monitoring constituents used in the statistical evalua-
tion by selecting a subset that are high in the facility's leachate relative to their
concentration in upgradient wells. New leachate data are being collected and
a reduced monitoring list of leachate indicator constituents will be proposed.

Specifically, we propose the following:

1. Intra-well comparisons using combined Shewart-CUSUM control charts
will be performed for all wells and constituents.
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. For new wells, background will be obtained using an accelerated sampling
plan of quarterly sampling for a period of two years. In the interim, new
monitoring measurements for those wells with less than eight background
samples will be compared to upgradient prediction limits.

. Every two years all data that are within control limits will be pooled
with background and control limits will be recomputed.

. Intra-well comparisons will also be computed for the upgradient wells
to insure that increasing trends are not due to regional or climactic
fluctuations.

. Nonparametric prediction limits will be used for those wells and con-
stituents that have detection frequency less than 25%.

. New leachate data will be obtained, and leachate concentrations will
be compared to upgradient prediction limits. At a later date, we will
propose to remove any constituent that is not significantly higher in
leachate relative to upgradient ground water.
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Overview

In the context of ground-water monitoring at waste disposal facilities, leg-
islation has required statistical methods as the basis for investigating potential
environmental impact due to waste disposal facility operation. Owner/Operators
must perform a statistical analysis on a quarterly or semi-annual basis. A sta-
tistical test is performed on each of many constituents (i.e., 10 to 50) for each
of many wells (5 to 100 or more). The result is potentially hundreds, and
in some cases, a thousand or more statistical comparisons performed on each
monitoring event. Even if the false positive rate for a single test is small {e.g.,
1%), the possibility of failing at least one test on any monitoring event is vir-
tually guaranteed. This assumes you have done the correct statistic in the first
place.

In the following sections, a statistical plan is developed that includes: an
effective verification resampling plan, and selection of appropriate statisti-
cal methods (e.g., parametric and nonparametric prediction limits or control
charts for intra-well comparison) that detect contamination when it is present
and do not falsely conclude that the site is contaminated. Statistical sig-
nificance of contamination detection cannot be properly determined without
verification resampling. It is noted from the information presented herein that
the final statistical detection monitoring plan cannot be fully specified until
background samples for the required list of indicator constituents are avail-
able. In general, it is unwise to perform statistical computations on any less
than eight background samples. This may be four quarterly samples in each
of two upgradient wells, or eight samples taken in each well where intra-well
comparisons are to be performed. To take any fewer samples will lead to high
false negative rates due to the large size of the prediction limit (i.e., with four
samples and three degrees of freedom, the uncertainty in the true mean and
standard deviation (z and o) given the sample based estimates (7 and s) is
enormous, resulting in extremely high prediction limits). Conversely, with only
a few background measurements, our knowledge of the true sampling variabil-
ity, distributional form and detection frequency may be completely inaccurate
leading to a high false positive rate.

Yet another major concern is whether the upgradient wells accurately char-
acterize the natural spatial variability that is observed in the downgradient
wells. The alternative is to perform intra-well comparisons which are gen-



erally preferable, however, we must first demonstrate that the well has not
been impacted by the site. To this end, we will first test the appropriateness
of upgradient versus downgradient comparisons for each well and constituent,
and in those cases where intra-well comparisons are applicable, demonstrate
(1) the absence of any significant trend in that well and constituent and (2)
demonstrate the absence of any constituents of concern (e.g., volatile organic
priority pollutant list compounds or other constituents that characterize the
leachate from the facility and would not be expected in the natural ground
water).

It is noted that when justified, intra-well comparisons are always more pow-
erful than their inter-well counterparts because they completely eliminate the
spatial component of variability. Due to the absence of spatial variability, the
uncertainty in measured concentrations is decreased making intra-well com-
parisons more sensitive to real releases (i.e., false negatives) and false positive
results due to spatial variability are completely eliminated.

The following provides an outline of the general statistical procedure for
ground-water monitoring under the Subtitle D regulation, which is also de-
scribed in the flowchart at the end of this report.

A Detection Monitoring

1. Upgradient Versus Downgradient Comparisons

(a) Detection frequency > 50%

i. If normal, compute normal prediction limit (40CFR 264 Sub-
part F), selecting false positive rate based on number of wells,
constituents and verification resamples (40CFR 264 Subpart
F), adjusting estimates of sample mean and variance for non-
detects.

ii. Iflognormal, compute a lognormal prediction limit (40CFR 264
Subpart F).

iii. If neither normal nor lognormal, compute nonparametric pre-
diction limit (40CFR 264 Subpart F) unless background is in-
sufficient to achieve a 5% site-wide false positive rate. In this
case, use a normal distribution {40CFR 264 Subpart F).
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(b) If the background detection frequency is greater than zero but less
than 50%, compute a nonparametric prediction limit and deter-
mine if the background sample size will provide adequate protection
from false positives. If insufficient data exist to provide a site-wide
false positive rate of 5%, more background data must be collected
(40CFR 264 Subpart F).

(c) If the background detection frequency equals zero, use the labora-
tory specific PQL (recommended) or limits required by applicable
regulatory agency (40CFR. 264 Subpart F). This only applies for
those wells and constituents that have at least 13 background sam-
ples. Thirteen samples provides a 99% confidence nonparametric
prediction limit with one resample {see Table 1). If less than 13
samples are available more background data must be collected.

(d) As an alternative to (c), use a Poisson prediction limit which can
be computed from only 4 background measurements regardless of
the detection frequency (USEPA, 1992 section 2.2.4).

(e) If downgradient wells fail, determine cause.
i. If the downgradient wells fail because of natural or off-site
causes, select constituents for intra-well comparisons (40CFR
264 Subpart F).
ii. If site impacts are found, a site plan for assessment monitoring

and detection monitoring (at unaffected wells) may be neces-
sary (40CFR 264 Subpart F).

2. Intra-well Comparisons

(a) For those facilities that either

i. Have no definable gradient,

ii. Have no existing contamination from an on-site-off-site landfill
or other source,

iii. Have too few upgradient wells to meaningfully characterize spa-
tial variability (e.g., a site with one upgradient well or a facil-
ity in which upgradient water quality is not representative of
downgradient water quality),



iv. Satisfy specific hydrogeological criteria (e.g.. slow moving ground-
water zones, no access to upgradient ground water, inappropri-
ate ground-water migration pathways) as defined by a ground-
water professional,

compute intra-well comparisons using combined Shewart-CUSUM
control charts {(40CFR 264 Subpart F).

(b) For those wells and constituents that fail upgradient versus down-
gradient comparisons, compute combined Shewart-CUSUM control
charts. If no VOCs or hazardous metals are detected and no trend is
detected in other indicator constituents. use intra-well comparisons
for detection monitoring of those wells and constituents.

{(c) If data are all non-detects after 13 quarterly sampling events, use
PQL as statistical decision limit (40CFR 264 Subpart F). Thirteen
samples provides a 99% confidence nonparametric prediction limit
with one resample (40CFR 264 Subpart F') and USEPA 1992 section
5.2.3). Note that 99% confidence is equivalent to a 1% false positive
rate, and pertains to a single comparison (i.e., well and constituent)
and not the site-wide error rate (i.e., all wells and constituents) that
is set to 5%.

(d) If detection frequency is greater than zero (i.e., the constituent is
detected in at least one background sample) but less than 25% set
control limit to the largest of at least 13 background samples.

{e) As an alternative to (c) and (d) compute a Poisson prediction limit
following collection of at least 4 background samples (USEPA 1992
section 2.2.4). Since the mean and variance of the Poisson distri-
bution are the same, the Poisson prediction limit is defined even
there is no variability (e.g., even if then constituent is never de-
tected in background). In this case, the reporting limits are used
in place of the measurements and the Poisson prediction limit can
be computed directly.

3. Verification Resampling

(a) Verification resampling is an integral part of the statistical method-
ology (USEPA 1992 section 5).



(b) Without verification resampling much larger prediction limits would
be required to obtain a site-wide false positive rate of 5%. The
resulting false negative rate would be dramatically increased.

(c) Verification resampling allows sequential application of a much smaller
prediction limit, therefore minimizing both false positive and false
negative rates,

(d) A statistically significant exceedance is not declared and should not
be reported until the results of the verification resample are known.
The probability of an initial exceedance is much higher than 5% for
the site as a whole.

(e) Note that requiring passage of two verification resamples (e.g., in
the state of California regulation) will lead to higher false negative
rates because larger prediction limits are required to achieve a site-
wide false positive rate of 5% than for a single verification resample;
hence, the preferred method is one verification resample. Also note
that for nonparametric limits, requiring passage of two verification
resamples may result in need for a larger number of background
samples than are typically available (see Gibbons, 1994).

4. False Positives and False Negative Rates

(a) Conduct simulation study based on current monitoring network,
constituents, detection frequencies, and distributional form of each
monitoring constituent (USEPA 1992 Appendix B).

(b) Project frequency of verification resamples and false assessments
for site as a whole for each monitoring event based on the results
of the simulation study. :

(c) As a general guideline, we require a site-wide false positive rate of
5% and a false negative rate of approximately 5% for differences
on the order of 3 to 4 standard deviation units (see USEPA 1992
Appendix B). Note that following USEPA we simulate the most
conservative case of a release that effects a single constituent in
a single downgradient well. In practice. multiple constituents in
multiple wells will be impacted, therefore, the actual false nega-
tive rates will be considerably smaller than estimates obtained via
simulation.
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5. Use of MDLs and PQLs in Ground-Water \onitoring

(a)
(b)
(c)

(d)

()

(f)

MDLs indicate that the analyte is present in the sample with con-
fidence.

PQLs indicate that the true quantitative value of the analyte is
close to the measured value.

For analytes with estimated concentration exceeding the MDL but
not the PQL, it can only be concluded that the true concentra-
tion is greater than zero - there is no way of knowing the actual
concentration.

If the laboratory-specific MDL for a given compound is 3 ug/l, and
the PQL for the same compound is 6 ug/l, then a detection of that
compound at 4 ug/l could actually represent a true concentration
of anywhere between 0 and 6 ug/l. The true concentration may
well be less than the MDL (see Currie 1968, Hubaux and Vos, 1970
and Gibbons 1994).

Comparison of such a value to a maximum contaminant level (MCL),
or any other concentration limit, is not meaningful unless the con-
centration is larger than the PQL.

Verification resampling applies to this case as well.

B. Assessment or Corrective Action Monitoring

1. Comparison to Background

ta)
(b)

Define background for any Appendix II compounds detected (i.e.,
a minimum of four background samples (40CFR 264 Subpart F).

Compute appropriate prediction limit based on distributional tests
and detection frequency as previously described, based on upgra-
dient data or historical data from each well (40CFR 264 Subpart
F).

Compare any Appendix II constituent concentrations found to the
background prediction limit. If all values are below the prediction
limit for two consecutive sampling events return to detection mon-
itoring (40CFR 264 Subpart F).
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(d) In Corrective Action (required if background is exceeded) use same
statistic until background is achieved for three years. (40CFR 264
Subpart F). Use Sen's test to evaluate trends (declining) to demon-
strate effectiveness of corrective action.

2. Comparison to a Standard

(a) If 2 maximum contaminant level (MCL) or alternate concentration
limit (ACL) is used, and the ACL or MCL is greater than the back-
ground prediction limit, then new concentrations in the assessment
or corrective action wells should be compared to the standard (i.e.,
ACL or MCL) using the upper 95% normal confidence limit com-
puted from the last four independent samples (USEPA 1992).

(b) In the case of anthropogenic compounds such as VOCs, if the stan-
dard is less than the PQL, then the standard becomes the PQL,
since no smaller value can be quantified.

(¢} Use Sen’s test to evaluate trends (both increasing and decreasing)
to demonstrate the effectiveness of corrective action.

C. Implementation

1. The computer program used to implement the detection monitoring plan
will encompass all aspects of the previously presented statistical decision
tree.

2. The program will be automatic with respect to selection of statistical
methods based on the decision tree and all wells and analytes will be
input as a complete file and analyzed on the basis of a single instruction.
Cumbersome programs such as GRITS/STAT which require extensive
user input for analysis of each well and constituent individually will be
avoided.

3. Once the program is configured no further statistical decisions, choices
or selections will be made so that it can be run by someone with or
without adequate statistical background to make these decisions.
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4. The program will have a graphical user interface that allows the user
to communicate the data format and to add new data to an existing
database rather than requiring a complete new database each quarter.

5. The computer program DUMPStat (Downgradient Upgradient Monitor-
ing Program Statistics) distributed by Discerning Systems, Vancouver
CA is the only existing program that provides these features.

D. Technical Details

The purpose of this section is to provide a description of the specific sta-
tistical methods used in DUMPStat, which is the computer program that will
be used in performing the routine statistical analysis of detection monitoring
data at the facility. Please note, however, that specific recommendations for
any given facility require an interdisciplinary site-specific study that encom-
passes knowledge of the facility, it's hydrogeology. geochemistry, and study of
the false positive and false negative error rates that will result. In general,
the appropriate statistical methods are available in DUMPStat, however the
program must be properly configured for each site to insure that the methods
are properly implemented. Performing a correct statistical analysis, such as
nonparametric prediction limits, in the wrong situation (e.g., when there are
too few background measurements) can lead to disaster. It is for this reason
that DUMPStat's simulation capabilities are so important. In the following,
the general DUMPStat algorithm is described.

1. Upgradient Versus Downgradient Comparisons

For those wells and constituents that show similar variability in upgra-
dient and downgradient monitoring zones inter-well comparisons can be
performed by computing limits based on historical upgradient data to
which individual new downgradient monitoring measurements can be
compared. In the following, the decision rules by which various predic-
tion limits can be computed is outlined. The decision points are based
on detection frequency and distributional form of the upgradient data.
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(a) Case 1: Compounds Quantified in All Background Samples

i. Test normality of distribution using the multiple group version
of the Shapiro-Wilk test {Wilk and Shapire, 1968) applied to
n background measurements. The multiple group version of
the original Shapiro-Wilk test (Shapiro and Wilk, 1965) takes
into consideration that upgradient measurements are nested
within different upgradient monitoring wells, hence the original
Shapiro-Wilk test does not apply (USEPA, 1992 section 1.1.4).

ii. If normality is not rejected, compute the 95% prediction limit

as:
i 1
Z+tpo14511 + =
n

where

T =

™
CREY

1

-
Il

n

s = Z(Ii“f)2

n—1

i=1

« is the false positive rate for each individual test,

tin—1.qf is the one-sided (1 — )100% point of Student’s t distri-
bution on n — 1 degrees of freedom.

and n is the number of background measurements.

iii. Select o as the minimum of .01 or one of the following:
A. Pass the first or one of one verification resample
o= (1-.95%)"
B. Pass the first or one of two verification resamples
o= (1-.95%)"
C. Pass the first or two of two verification resamples
a=/1- .95V /1/2

where & is the number of comparisons (.e.. monitoring wells
times constituents - see USEPA 1992 section 5.2.2).
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iv. If normality is rejected, take natural logarithms of the n back-

vi.

ground measurements and recompute the multiple group Shapiro-
Wilk test.

If the transformation results in a nonsignificant G statistic (i.e.,
the values log.(r) are normally distributed - see USEPA 1992
section 1.1}, compute the lognormal prediction limit as:

_ f 1 )
erp (y + in-1,a)5y1/ 1 + ;

where
R loge(z)
g- 3 oude)
i=1

and

;= \jz (loge(z:) - 9)?

i==1 n-1

If log transformation does not bring about normality (i.e., the
probability of G is less than 0.01), cornpute nonparametric pre-
diction limits as in section 3 (USEPA 1992 section 5.2.3). (Op-
tion - compute Poisson prediction limits as in section 3.4 - see
USEPA 1992 section 2.2.4).

(b) Case 2: Compounds Quantified in at Least 30% of All Background
Samples

i.

il

Apply the multiple group Shapiro-Wilk test to the n; quantified
measurements only.

If the data are normally distributed compute the mean of the
n background samples as:

f:(l—@)a‘c’
n

where Z' is the average of the n, detected values, and ny is the
number of samples in which the compound is not detected or is
below the method detection limit. The standard deviation is:

ng — 1 ,
SCOESTR=E
n n n—1
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where s’ is the standard deviation of the n, detected measure-
ments. The normal prediction limit can then be computed as
previously described. This method is due to Aitchison (1953)
- (see USEPA 1992 section 2.2.2).

iit. If the multiple group Shapiro-Wilk test reveals that the data
are lognormally distributed, replace Z’ with 7' and s' with s,
in the equations for Z and s.

iv. The lognormal prediction limit may then be computed as pre-
viously described.

v. Note that this adjustment only applies to positive random vari-
ables. The natural logarithm of concentrations less than 1 are
negative and therefore the adjustment does not apply. For this
reason we add 1 to each value (i.e., log.(z: + 1) > 0), compute
the prediction limit on a log scale and then subtract one from
the antilog of the prediction limit.

vi. If the data are neither normally or lognormally distributed,
compute a nonparametric prediction limit. (Option - compute
normal prediction limit).

(c) Case 3: Compounds Quantified in less than 50% of All Background
Samples

i. In this application, the nonparametric prediction limit is the
largest concentration found in n upgradient measurements (USEPA
1992 section 4.2.1).

ii. Gibbons (1990, 1991) has shown that the confidence associ-
ated with this decision rule, following one or more verification
resamples, is a function of the multivariate extension of the
hypergeometric distribution (USEPA 1992 section 5.2.3).
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Complete tabulations of confidence levels for n = 4,...,100,
k= 1,...,100 future comparisons (e.g., monitoring wells),
and a variety of verification resampling plans are presented in
Gibbons (1994). For example with 5 monitoring wells and 10
constituents (i.e., 50 comparisons). we would require 40 back-
ground measurements to provide 95% confidence (USEPA 1992
section 5.2.3). Table 1 displays confidence levels for a single
verification resample.

As an option to the nonparametric prediction limits, DUMP-
Stat can compute Poisson prediction limits. Poisson predic-
tion limits are useful for those cases in which there are too
few background measurements to achieve an adequate site-wide
false positive rate using the nonparametric approach. Gibbons
(1987) derived the Poisson prediction limit as

t2
Poisson PL = y/n + o + t/n\/y(l +n)+1%/4.

where ¢ is the sum of the detected measurements or report-
ing limit for those samples in which the constituent was not
detected and ¢ is the {1 — &)100 upper percentage point of Stu-
dent’s ¢-distribution (USEPA 1992 section 2.2.4). More recent
work in this area suggests that a more conservative approach
is to substitute the normal multiplier = for ¢ using a value of
alpha as previously described. The normal multiplier is now
used in DUMPStat.



TABLE 1

PROBABILITY THAT THE FIRST SAMPLE OR THE VERIFICATION RESAMPLE

WILL BE BELOW THE MAXIMUM OF n BACKGROUND MEASUREMENTS

AT EACH OF k MONITORING WELLS FOR A SINGLE CONSTITUENT

17

Pravious Number of Monitoring Wells (k)

n 1 2 3 4 3 ] T 4 9 10 11 12 13 14 15
4 033 881 838 8012 gl TA4 720 698 879 661 545 630 GlY .604 5912
L] 252 913 879 349 822 800 TR 760 -T42 .76 711 897 684 672 .6881
-] 984 933 .p08 .5812 480 840 812 .808 .789 T 761 -T48 .Tag 125 Tl
T 872 AT .928 905 888 849 453 .838 825 812 799 .78 A 7486 .TS7
1 H78 P38 939 922 206 891 878 8364 832 841 810 819 .809 800 .to1
? 082 a5 .Dag 933 9171 .08 896 .BA% B74 884 454 B4 815 B2 418
10 983 o7 057 943 £33 922 o1t .90l 891 482 AT3 .63 A5T 849 841
11 .087 BT3 964 983 942 933 923 914 908 .agT 889 882 .B74 867 .880
£2 989 879 P60 959 230 941 033 913 917 910 002 898 389 482 8T8
I3 900 981 H7T3 084 058 948 241 R k1] 927 920 014 .poT .01 805 480
14 092 -984 B-r{.} P6% 981 934 948 D4l 938 929 923 917 212 906 901
13 983 .088 2Te 872 988 959 932 947 .942 036 231 R ri.} 020 013 910
18 903 .o87 941 073 969 544 s 953 9438 943 938 933 928 923 §19
17 994 .p8s 983 9758 972 967 9612 95T 951 048 043 038 935 L300 928
14 995 890 985 980 273 870 .pos 981 95T 953 946 P4 940 .97 933
i3] 993 881 R-I'1.] 082 ST 873 089 063 .06t 987 Lk Ll .Dag 942 .pas
20 996 991 .9aT 983 979 978 972 °68 964 980 oar 953 950 04T 042
23 R 994 092 989 -pag 084 981 078 076 973 871 .osa 988 .64 981
30 R ] 098 k11 992 990 988 986 084 R-1 K 981 970 7 975 874 972
a3 R 897 998 094 993 991 .990 .988 987 986 984 .983 981 .980 979
40 R 098 99T -99% 294 993 992 ool 980 989 988 087 -9a3 P84 .943
43 R 008 997 - 095 -903 904 993 992 091 990 .98% 933 Q8T -paT
30 999 .Do3 998 00T .908 RO6 983 994 993 .99} 992 991 .990 990 DAS
40 990 999 994 908 997 .0e7 998 998 993 .993 994 R0 .993 993 992
TO 1.00 .99 999 .958 998 098 997 997 997 996 696 993 995 .995 foe
a0 1.00 .pod 999 999 998 988 998 998 997 897 997 998 .998 906 996
90 1.00 1.00 999 990 900 999 998 998 094 998 997 997 997 997 .98
100 1.00 1.00 -999 999 999 099 998 998 998 998 998 998 2997 997 99T

Pravious Numbsr of Maonitoring Wells (k)

n 20 23 30 33 40 43 50 33 50 85 T0 s 30 90 100
547 504 4Td 449 428 410 394 .330 .aa7 56 343 338 27 312 209
5 812 374 543 317 A9S ATS 439 442 430 417 .4008 198 346 389 3538
[ .568 .631 800 574 352 332 314 499 LA84 472 460 449 439 .420 403
7 .71 578 .048 613 500 .580 .563 4T 832 419 .507 406 483 4886 .450
L} .T30 T .588 564 642 622 .603 .11 5T4 381 549 337 527 307 490
9 .T81 130 -T2 899 478 459 842 618 612 308 .588 T4 364 344 527
10 807 %7 .T52 729 .109 691 5T4 659 844 531 619 .a08 397 578 .360
Il .828 .801 ITT .783 .T38 .718 701 K. 874 6481 549 .638 827 .608 390
12 847 821 799 T8 T80 .T43 77 713 100 887 875 .804 B34 .833 .818
12 483 839 817 708 .T81 .Th4 150 736 123 .T11 509 .49 6T 600 643
14 878 854 834 -ais 199 T84 189 736 T44 .72 721 .T10 .701 882 .688
1% N.1.L} 487 848 831 813 .801 747 T 782 .T31 T40 .T30 T11 .T03 .638
16 A998 879 i.1.3) 843 .830 816 803 .9 TTH .T68 .T58 .T48 Tag 722 706
1T 807 889 A72 .57 843 820 81T 406 194 LT84 TT4 783 .T56 T39 .72}
18 214 598 842 564 3535 842 330 aie .ADS .To8 .TAS .T80 ITL TS84 .739
19 921 908 891 878 463 853 842 831 821 A1 802 .93 .TAS T80 754
20 928 913 -899 113 874 883 832 842 531 823 814 808 TER .TA2 .T68
23 950 .929 S0 919 910 901 202 884 878 469 882 853 848 .813 .823
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33 72 968 -1} 954 P4l 942 937 931 926 .921 918 K1 D07 ags 580
40 DT8 973 988 983 958 034 949 .943% 841 938 933 023 P14 B1T 09
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80 990 08T 943 .982 .980 N hy.1 978 a7 871 968 968 D04 -pel 958 054
T0 992 .000 .989 QAT 943 .983 081 940 978 978 974 973 71 968 p63
80 994 093 L1t .990 .88 .087 986 or4 0a3 081 080 970 o7y 978 o7
80 .0as 9Pe 993 992 801 .o90 o83 1Ly 986 985 984 983 D83 980 DTA
100 908 993 P94 993 992 991 991 990 080 988 o8 .988 983 .o83 987

2. Intra-Well Comparisons

One particularly good method for computing intra-well comparisons is
the combined Shewart-CUSUM control chart (USEPA 1992 section 6.1).
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The method is sensitive to both gradual and rapid releases and is also
useful as a method of detecting “trends” in data. Note that this method
should be used on wells unaffected by the landfill. There are several
approaches to implementing the method and in the following one useful
way is described as well as discussion of some statistical properties.

(a) Assumptions

The combined Shewart-CUSUM control chart procedure assumes
that the data are independent and normally distributed with a fized
mean p and constant variance o2. The most important assumption
is independence, and as a result wells should be sampled no more
frequently than quarterly. In some cases, where ground-water moves
relatively quickly, it may be possible to accelerate background sam-
pling to eight samples in a single year; however, this should only
be done to establish background and not for routine monitoring.
The assumption of normality is somewhat less of a concern, and if
problematic, natural log or square root transformation of the ob-
served data should be adequate for most practical applications. For
this method, nondetects can be replaced by the method detection
limit without serious consequence. This procedure should only be
applied to those constituents that are detected at least in 25% of
all samples, otherwise, o? is not adequately defined.

(b) Nondetects

i. For those well and constituent combinations in which the de-
tection frequency is less than 25%, we will provide graphical
display of these data until a sufficient number of measurements
are available to provide 99% confidence (i.e., 1% false positive
rate} for an individual well and constituent using a nonpara-
metric prediction limit, which in this context is the maximum
detected value out of the n historical measurements. As pre-
viously discussed this amounts to 13 background samples for 1
resample, 8 background samples for pass 1 of 2 resamples and
18 background samples for pass 2 of 2 resamples. It should
be obvious that if nonparametric prediction limits are to be
used for intra-well comparisons of rarely detected constituents,
two verification resamples will often be required and failure will
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only be indicated if both measurements exceed the limit (i.e.,
the maximum of the first 8 samples).

For those cases in which the detection frequency is greater than
25%, DUMPStat substitutes the median reporting limit for the
nondetects. In this way, changes in reporting limits do not
appear to be significant trends.

If nothing is detected in 8, 13 or 18 i.ndependent samples (de-
pending on resampling strategy), DUMPStat uses the reporting
limit as the control limit.

As in the previously described inter-well comparisons, DUMP-
Stat provides optional use of Poisson prediction limits as an al-
ternative to nonparametric prediction limits for rarely detected
constituents (z.e., less than 25% detects). Poisson prediction
limits can be computed after 8 background measurements re-
gardless of detection frequency.

{c) Procedure

i.

ii.

1l.

DUMPStat requires that at least 8 historical independent sam-
ples are available to provide reliable estimates of the mean u
and standard deviation g, of the constituent’s concentration in
each well.

DUMPStat selects the three Shewart-CUSUM parameters h
(the value against which the cumulative surn will be compared),
k (a parameter related to the displacement that should be
quickly detected), and SCL (the upper Shewart limit which
is the number of standard deviation units for an immediate re-
lease). Lucas (1982) and Starks (1988) suggest that k = 1, A
= 5, and SCL = 4.5 are most appropriate for ground-water
monitoring applications. This sentiment is echoed by USEPA
in their interim final guidance document Statistical analysis of
ground-water monitoring data at RCRA facilities (April, 1989).
Also see USEPA 1992 section 6.1. For ease of application, how-
ever, we have selected h = SCL = 4.5, which is slightly more
conservative than the value of A = 5 suggested by USEPA.

Denote the new measurement at time-point ¢; as z;.
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Compute the standardized value =;
T —-I

s
where Z and s are the mean and standard deviation of the at

least 8 historical measurements for that well and constituent
(collected in a period of no less than one year).

. At each time period, ¢, compu'te the cumulative sum S;, as

S{ = max [0, (z,- - k) + 51_1]
where max(A, B] is the maximum of A and B, starting with
So = O
Plot the values of S; (y-axis) versus t; (x-axis) on a time chart.
Declare an “out-of-control” situation on sampling peried ¢, if
for the first time, S; > A or z; > SCL. Any such designation,
however, must be verified on the next round of sampling, before
further investigation is indicated.

The reader should note that unlike prediction limits which pro-
vide a fixed confidence level (e.g., 95%) for a given number of
future comparisons, control charts do not provide explicit con-
fidence levels, and do not adjust for the number of future com-
parisons. The selection of h = SCL = 4.5 and k = 11is based on
USEPA’s own review of the literature and simulations (see Lu-
cas, 1982; Starks, 1988; and USEPA, 1989). USEPA indicates
that these values “allow a displacement of two standard devi-
ations to be detected quickly.” Since 1.96 standard deviation
units corresponds to 95% confidence on a normal distribution,
we can have approximately 95% confidence for this method as
well.

In terms of plotting the results, it is more intuitive to plot val-
ues in their original metric (e.g., ug/l) rather than in standard
deviation units. In this case h = SCL = £ + 4.5s and the S,
are converted to the concentration metric by the transforma-
tion S; * s + £, noting that when normalized (z.e., in standard
deviation units) £ = 0 and s = 1 so that A = SCL = 4.5 and
S, *x14+0= S,'.

When n > 12 Starks (1988) and USEPA (1992) suggest that
k = .75, and h = SCL = 4.0 provide more conservative control



limits and this approach is now used in DUMPStat.

(d) Outliers

i

il.

iil.

From time to time, inconsistently large or small values (outliers)
can be observed due to sampling, laboratory, transportation,
transcription errors, or even by chance alone. The verification
resampling procedure that we have proposed will tremendously
reduce the probability of concluding that an impact has oc-
curred if such an anomalous value is obtained for any of these
reasons. However, nothing has eliminated the chance that such
errors might be included in the historical measurements for a
particular well and constituent. If such erroneous values (either
too high or too low) are included in the historical database, the
result would be an artificial increase in the magnitude of the
control limit, and a corresponding increase in the false negative
rate of the statistical test (i.e., conclude that there is no site
impact when in fact there is).

To temove the possibility of this type of error, the historical
data are screened for each well and constituent for the exis-
tence of outliers (USEPA 1992 section 6.2) using the well known
method described by Dixon (Biometrics, 1953, 9, 74-89). These
outlying data points are indicated on the control charts (using
a different symbol), but are excluded from the measurements
that are used to compute the background mean and standard
deviation. In the future, new measurements that turn out to
be outliers, in that they exceed the control limit, will be dealt
with by verification resampling in downgradient wells only.
This same outlier detection algorithm is applied to each up-
gradient well and constituent to screen outliers for inter-well
comparisons as well.

(e) Existing Trends
If contamination is pre-existing, trends will often be observed in
the background database from which the mean and variance are
computed. This will lead to upward biased estimates and grossly
inflated control limits. To remove this possibility. we first screen the
background data for each well and constituent for trend using Sen’s
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(1986) nonparametric estimate of trend. Confidence limits for this
trend estimate are given by Gilbert (1987). A significant trend is
one in which the 99% lower confidence bound is greater than zero.
In this way, even pre-existing trends in the background dataset will
be detected.

(f) A Note on Verification Sampling

i. It should be noted that when a new monitoring value is an
outlier, perhaps due to a transcription error, sampling error, or
analytical error, the Shewart and CUSUM portions of the con-
trol chart are affected quite differently. The Shewart portion of
the control chart compares each individual new measurement
to the control limit, therefore, the next monitoring event mea-
surement constitutes an independent verification of the original
result. In contrast, however, the CUSUM procedure incorpo-
rates all historical values in the computation, therefore, the
effect of the outlier will be present for both the initial and ver-
ification sample; hence the statistical test will be invalid.

ii. For example, assume T = 50, and s = 10. On quarter 1 the
new monitoring value is 50, so z = (50 — 50)/10 =0 and S, =
max[0, (z — 1) + 0] = 0. On quarter 2, a sampling error occurs
and the reported value is 200, yielding z = (200 ~ 50)/10 = 15
and 5, = max[0, (15— 1) +0] = 14, which is considerably larger
than 4.5; hence an initial exceedance is recorded. On the next
round of sampling, the previous result is not confirmed, because
the result is back to 50. Inspection of the CUSUM, however,
yields 2 = (50~ 50)/10 = 0 and S; = max(0, (0 - 1) + 14] = 13,
which would be taken as a confirmation of the exceedance, when
in fact, no such confirmation was observed. For this reason, the
verification must replace the suspected result in order to have
an unbiased confirmation.

(g) Updating the Control Chart

i. As monitoring continues and the process is shown to be in
control, the background mean and variance should be updated
periodically to incorporate these new data. Every year or two,
all new data that are in control should be pooled with the
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initial samples and Z and s recomputed. These new values of
7 and s will then be used in constructing future control charts.
This updating process should continue for the life of the facility
and/or monitoring program (USEPA 1992 section 6.2).

ii. DUMPStat allows the user to update background by changing
the time window menu option. This option sets a window of
time for which background summary statistics are computed.
Changing the maximum date will incorporate new data into
the background limit estimate. Note that this time window
applies to computing background for both inter-well and intra-
well comparisons.

(h) An Alternative Based on Prediction Limits

1. An alternative approach to intra-well comparisons involves com-
putation of well-specific prediction limits. Prediction limits are
somewhat more sensitive to immediate releases but less sensi-
tive to gradual releases than the combined Shewart-CUSUM
control charts. Prediction limits are also less robust to devia-
tions from distributional assumptions.

ii. As an alternative to combined Shewart-CUSUM control charts
DUMPStat can compute normal prediction limits as described
in the previous section on inter-well comparisons.

iii. For detection frequencies greater than 25%, nondetects are re-
placed with the median reporting limit. For detection frequen-
cies less than 25%, either nonparametric or Poisson prediction
limits are computed depending on what option the user has
selected (i.e., rare-event statistic window).

3. Comparison to a Standard

(a) For assessment or corrective action, it is often required that samples
from a potentially impacted well be compared to a ground-water
quality protection standard such as an MCL or ACL. DUMPStat’s
assessment monitoring module provides tabular and graphical dis-
play of this comparison based on tests of increasing and decreasing
trend and comparison of the standard to the upper 95% normal
confidence limit applied to the last four independent samples.
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(b) The 95% confidence limit for the mean of the last four measurements

1s computed as

_ s
z+ t[a,.os]é' :

(c) Nondetects are replaced by one-half of the reporting limit since with

only four measurements, more sophisticated statistical adjustments
are not appropriate.

E. Some Methods to be Avoided

In the following sections some statistical methods that should be avoided
are described.

1. Analysis of Variance - ANOVA

Application of ANOVA procedures to ground-water detection monitor-
ing programs, both parametric and nonparametric is inadvisable for the
following reasons.

(a) Univariate ANOVA procedures do not adjust for multiple compar-

isons due to multiple constituents which can be devastating to the
site-wide false positive rate) As such, a site with 10 indicator con-
stituents will have a 40% chance of failing at least one on every
moritoring event (USEPA 1992 section 5.2.1).

ANOVA is more sensitive to spatial variability than contamination.
Spatial variability effects mean concentrations but typically not the
variance, hence small yet consistent differences will achieve statisti-
cal significance. In contrast, contamination effects both variability
and mean concentration, therefore a much larger effect is required
to achieve statistical significance. In fact, application of ANOVA
methods to pre-disposal ground-water monitoring data can result
in statistically significant differences between upgradient and down-
gradient wells, despite the fact that there is no waste in between.
The reasons for this are: (a} The overall F-statistic tests the null
hypothesis of no differences among anyv of the wells regardless of
gradient (i.e., it will be significant if two downgradient wells are
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different), and (b) The distribution of the mean of 4 measurements
(i.e., four measurements collected from the same well within a six
month period) is normal with mean p and variance o*/4 whereas
the distribution of each of the individual measurements is normal
with mean g and variance ¢?. This means that the standard devi-
ation of the mean of four measurements is one-half the size of the
standard deviation of the individual measurements themselves. As
a result, small but consistent geochemical differences that are in-
variably observed naturally across a waste disposal facility will be
attributed to contamination. To make matters worse, since there
are far more downgradient than upgradient wells at these facilities,
spatial variation has a far greater chance of occurrence downgra-
dient than upgradient further increasing the likelihood of falsely
concluding that contamination is present. While spatial variation
is also a problem for prediction limits and tolerance limits for sin-
gle future measurements, it is not nearly as severe a problem as
for ANOVA since the distribution of the individual measurement is
considered and not the more restrictive distribution of the sample
mean.

Nonparametric ANOVA is often presented by USEPA as if it pro-
tects the user from all of the weaknesses of its parametric coun-
terpart. This is not the case. Both methods assume identical dis-
tributions for the analyte in e/l monitoring wells. The only differ-
ence is that the parametric ANOVA assumes that the distribution
is normal and the nonparametric ANOVA is indifferent to what
the distribution is. Both parametric and nonparametric ANOVA
assume homogeneity of variance, a condition that almost never oc-
curs in practice. This is not a weakness of methods for single future
samples (i.e., prediction and tolerance limits) since the variance es-
timates rely solely on the background data. Why would anyone
want to use downgradient data from an existing site (which could
be affected by the site) to characterize natural variability? Yet this
is exactly what the ANOVA does. Furthermore, ANOVA is not a
good statistical technique for detecting a narrow plume that might
effect only one of 10 or 20 monitoring wells (USEPA 1992 section
5.2.1).
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(d) ANOVA requires the pooling of downgradient data. Specifically,
USEPA has suggested that four samples per semi-annual monitor-
ing event be collected (i.e., eight samples per year). As such, on
average, it will never most rapidly detect a release, since only a
subset of the required four semi-annual samples will be affected by
a site impact. This heterogeneity will decrease the mean concen-
tration and dramatically increase the variance Tor the affected well
thereby limiting the ability of the statistical test to detect contam-
ination when it occurs. This is not true for tolerance limits, predic-
tion limits and control charts, which can and should be applied to
individual measurements. USEPA may like ANOVA because it will
appear to be more powerful than prediction and tolerance limits for
single future values. The increased power, however, is only realized
when all four measurements from a single well are equally affected
by the site impact which on average will only occur 25% of the time
(i.e., if four semi-annual sampling events are evenly spaced, all four
will be impacted by a new release only one in four times). For
these reasons, when applied to ground-water detection monitoring,
ANOVA will maximize both false positive and false negative rates,
and double the cost of monitoring (i.e.. ANOVA requires four sam-
ples per semi-annual event or eight per year versus a maximum of
four quarterly samples per year for prediction or tolerance limits
that test each new individual measurement).

To illustrate, consider the data in Table 2 which were obtained from a
facility in which no disposal of waste has yet occurred (see Gibbons, 1994
NSWMA WasteTech Conference Proceedings. Charleston SC, 1/14/94).
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TABLE 2

Raw Data for All Detection Monitoring
Wells and Constituents {mg/l)
This Landfill has no Garbage in it

Well | Event | TOC TKN COD ALKk
MW(l 1 5.2000 .8000 | <44.0000 58.0000
MWO01 2 6.8500 .9000 | '13.0000 49.0000
MWO1 3 4.1500 .5000 | 13.0000 | -40.0000
MWQ1 4 15.1500 .5000 | 40.0000 42.0000
MWO02 1 1.6000 | 1.6000 | 11.0000 59.0000
MWO02 2 6.2500 .3000 | 10.0000 82.0000
MWO02 3 1.4500 .7000 | 10.0000 54.0000
MW02 4 1.0000 .2000 | 13.0000 51.0000
MWGQ33 1 1.0000 | 1.8000 | 28.0000 39.0000
MWO03 2 1.9500 .4000 | 10.0000 70.0000
MWO03 3 1.5000 3000 | 11.0000 42.0000
MWO03 4 4.8000 .5000 ; 26.0000 42.0000
MW04 1 4.1500 | 1.5000 | 41.0000 54.0000
MW04 2 1.0000 .3000 | 10.0000 40.0000
MW04 3 1.9500 23000 | 24.0000 32.0000
MW04 4 1.2500 .4000 | 45.0000 28.0000
MWO05 1 2.1500 6000 | 39.0000 51.0000
MW05 2 1.0000 .4000 | 26.0000 55.0000
MW03 3 19.6000 .3000 | 31.0000 60.0000
NMWO0S 4 1.06000 22000 | 48.0000 52.0000
MWO06 1 1.4000 .8000 | 22.0000 | 118.0000
MWO06 2 1.0000 2000 | 23.0000 66.0000
MWO06 3 1.5000 .5000 | 25.0000 59.0000
MWO06 4 20.5500 .4000 | 28.0000 63.0000
P14 1 2.0500 .2000 | 10.0000 79.0000
Pi4 2 1.0500 .3000 | 10.0000 96.0000
Pl4 3 5.1000 .5000 | 10.0000 89.0000

Results of applying both parametric and nonparametric ANOVA to these
predisposal data vielded an effect that approached significance for Chem-
ical Oxygen Demand (COD) (p < .072 parametric and p < .066 non-
parametric) and a significant difference for Alkalinity (ALK) (p < .002
parametric and p < .009 nonparametric). In terms of individual compar-
isons, significantly increased COD levels were found for well MW05 (p
< .026) and significantly increased ALIX was found for wells MWO06 (p <
.026) and P14 (p < .003) relative to upgradient wells. Of course, these
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results represent false positives due to spatial variability, since there is
no garbage. What is perhaps most remarkable, however, is the absence
of any significant results for TOC, where some of the values are as much
as 20 times higher than the others. The reason, of course, is that these
extreme values tremendously increase the within-well variance estimate,
rendering the ANOVA powerless to detect any differences regardless of
magnitude. ‘This is yet another testimonial to why it is environmentally
negligent to average measurements from downgradient monitoring wells,
a problem that is inherent to ANOVA-type analyses when applied to dy-
namic ground-water quality measurements. The elevated TOC data are
clearly inconsistent with chance expectations and should be investigated.
In this case, however, they are likely due to insects getting into the wells
since this greenfield facility is in the middle of the Mohave desert.

. Cochran’s Approximation to the Behrens Fisher ¢-test

Although no longer required, for years the USEPA RCRA regulation
was based on application of the Cochran’s approximation to the Behrens
Fisher (CABF) ¢- test. The test was incorrectly implemented by requir-
ing that four quarterly upgradient samples from a single well and single
samples from a minimum of three downgradient wells each be divided
into four aliquots and treated as if there were 4n independent measure-
ments. The net result was that every hazardous waste disposal facility
regulated under RCRA was declared “leaking.” As an illustration con-
sider the data in Table 3.



TABLE 3

IHlustration of pH Data Used in Computing
the CABF t-test

Date Replicate Average

1 2 3 4

Background

11/81 777 7.76 T.78 T.78 7.77
2/82 7.74 7.80 T7.82 7.85 7.80
5/82 7.40 T7.40 7.40 T7.40 7.40
8/82 7.50 7.50 7.50 T.50 7.50
Xz 7.62 7.62
SDp 0.18 0.20
Ngp 16 4
Monitoring

9/83 7.39 7.40 7.38 7.42 7.40
Xg 7.40 7.40
SDg 0.02

Ng 4 1

Note that the aliquots are almost perfectly correlated and add virtu-
ally no independent information yet they are assumed to be completely
independent by the statistic. The CABF ¢-test is computed as

_Xe K _ 762-740 22, o

t — — E4
52 s 032 0004 5
Sk Sy 22 0004
\/JVB + fVM 16 1

The associated probability of this test statistic is 1 in 10,000 indicating
that the chance that the new monitoring measurement came from the
same population as the background measurements is 1 in 10,000. Note
that in fact, the mean concentration of the four aliquots for the new
monitoring measurement is identical to one of the four mean values for
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background, suggesting that intuitively the probability is closer to 1 in
4 rather than 1 in 10,000. Averaging the aliquots, which should have
never been split in the first place, yields the statistic

Xp— Xy  T62-740 _2 1

- Spy/m +1 20/ e 2

| )
o

SN

which has an associated probability of 1 in 2. Had the sample size been
increased to N = 20 the probability would have decreased to 1 in 3.
It took U.S. EPA six years to recognize this flaw and to change this
regulation (see USEPA 1988).

. Control of False Positive Rate by Constituent

Site-wide false positive and false negative rates are more important than
choice of statistic, nonetheless, certain statistics make it impossible to
control the site-wide false positive rate because the rate is controlled sep-
arately for each constituent (e.g., parametric and nonparametric ANOVA
- see USEPA 1992 section 5.2.1). The only important false positive rate
is the one which includes all monitoring wells and all constituents, since
any single exceedance can trigger an assessment. This criterion impacts
greatly on the selection of statistical method. These error rates are
dependent on the number of wells, number of constituents, number of
background measurements, type of comparison (i.e., intra-well versus
inter-well), distributional form of the constituents, detection frequency
of the constituents and the individual comparison false positive rate of
the statistic being used. Invariably, this leads to a problem in inter-
val estimation the solution of which is typically a prediction limit that
incorporates the effects of verification resampling as well as multiple
comparisons introduced by both multiple monitoring wells and multiple
monitoring constituents.

. Restriction of Background Samples

Certain states have interpreted the Subtitle D regulation as indicating
that background be confined to the first four samples collected in a day
or a semi-annual monitoring event or a year. The first approach (i.e.,
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four samples in a day violates the assumption of independence and con-
founds day to day temporal and seasonal variability with potential con-
tamination. As an analogy, consider setting limits on yearly ambient
temperatures in Chicago by taking four temperature readings on July
4th. Say the temperature varied between 73 and 85 degrees on that day
yielding a prediction interval from 70 to 90 degrees. As I write this, the
temperature in Chicago is -20 degrees. Something is clearly amiss. In the
second example of restricting background to the first four events taken in
6 months, the measurements may be independent if ground water flows
fast enough, but seasonal variability is confounded with contamination.
The net result is that comparisons of background water quality in the
summer may not be representative of point of compliance water quality
in the winter (e.g., disposal of road salts increasing conductivity in the
winter). In the third example in which background is restricted to the
first four quarterly measurements, independence is typically not an issue
and background versus point of compliance monitoring well comparisons
are not confounded with season. However, as previously pointed out
in the site-specific illustration, restriction of background to ornly four
samples dramatically increases the size of the statistical prediction limit
thereby increasing the false negative rate of the test (i.e., the predic-
tion limit is over five standard deviation units above the background
mean concentration). The reason for this is that the uncertainty in the
true mean concentration covers the majority of the normal distribution.
As such we could obtain virtually any mean and standard deviation by
chance alone. If by chance the values are low. false positive results will
occur. If by chance the values are high, false negative results will occur.
By increasing the background sample size, uncertainty in the sample
based mean and standard deviation decrease as does the size of the pre-
diction limit, therefore both false positive and false negative rates are
minimized. Furthermore, use of statistical outlier detection procedures
applied to the background data will remove the possibility of spurious
background results falsely inflating the size of the prediction limit.
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F. Results of Application at the USPCI/Laidlaw Grassy Mountain Facility

In the following, results of site-specific analvsis of the existing monitoring
program are described.

1. Monitoring Well Network

A list of upgradient and downgradient monitoring wells are provided. in
the following Table.



Current Upgradient and Downgradient Monitoring Wells

Upgradient Downgradient
PZo6 Wwio0
P207 w1l
PZ08 wiz2
w1 wis
WI19A
w2
wil
wiz
w2l
W
was
war
was
W2eA
W30A
WalA
w3l
W4
Was
wis
W3ITA
WisA
w3i9
W40A
Wil
Waz
W4l
Wiad
W43
W46
W4T
Was
W49
ws
Wip
Wil
W32
Wsl
Wid
Wwss
wi6
wWaT
wss
wise
W80
wWeT
woas
Wag
wTo
wWT1
WT1
w7l
Wid
T3
ws
w9
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A list of the constituents used in the analysis is provided in the following
Table.

Constituents used in the Analysis

Constituent
Arsenic (total)
Barium (total)
Beryllium (total)
Cadmium (total)
Chromium (total)
Copper (total)
Dissolved solids (total)
Lead (total)
Manganese (total)
Mercury (total)
Molybdenum (total)
Nickel (total)
pH
Purgable organic halides
Selenium (total)
Silver (total)

Sulfide

Suspended solids (total)
Total organic carbon
Zinc (total)

VOCs

For the purpose of this initial analysis, background was set to all data
prior to 1995.

. Upgradient versus Downgradient Comparisons

Results of upgradient versus downgradient comparisons are presented
in Appendix A. All historical data for each downgradient well and con-
stituent is displayed graphically along with the upgradient prediction
limit (i.e., horizontal line). All historical upgradient data were used in
computing the prediction limits, hence the shaded background time line
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covers the entire x-axis. Raw upgradient data with outliers indicated are
displayed in Table 1 for all constituents. Current downgradient moni-
toring results with statistical exceedances noted are displayed in Table
2. Comparison of detection frequencies in upgradient and downgradient
wells is presented in Table 3. Tests of distributional form and correspond-
ing type of prediction limit selected are displayed in Table 4. Computed
prediction limit values and intermediate statistics for normal and lognor-
mal prediction limits and confidence levels for nonparametric prediction
limits are displayed in Table 5. Historical data for those downgradient
monitoring wells that exceeded an upgradient prediction limit (whether
they were verified or not) are displayed in Table 6.

Inspection of Table 1 reveals considerable spatial variability as reflected
in differences between the four background wells (e.g., see arsenic in
Table 1 of Appendix A). This spatial variability limits the usefulness of
upgradient versus downgradient comparisons because spatial variability
will be confused with a potential site impact.

Inspection of Table 2 of Appendix A (and graphs at the end of this
report) reveals verified exceedances of upgradient limits for manganese
in W10, W11, W2, W27, W30A, W38A, W39, W4d, W45, W46, W58,
W59, W69 and WT0, sulfide in wells W24 and W60 and total suspended
solids in wells W30A and W51. Inspection of historical data for these
wells and constituents (see Table 6 and graphs at end of the report
and/or in Appendix A) reveal that in general, these concentrations have
historically exceeded upgradient background with either no evidence of
increasing trend or gradual trends over time.

. Intra-well Comparisons

Given (1) the presence of spatial variability. (2) the absence of any de-
tected volatile organic compounds (which are present in large concentra-
tions in the facility’s leachate) and (3) the absence of any significant trend
in historical concentrations, intra-well comparisons are the method of
choice. Combined Shewart-CUSUM control charts are displayed graph-
ically for all wells and constituents in Appendix B. Summary statistics
and intermediate computations are displayed in Table 1 of Appendix
B. All wells and constituents were automatically tested for trend using
Sen’s nonparametric test prior to analysis. A single significant verified
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significant increase was detected for manganese in well W39 (see Graphs
at end of report and/or Appendix B). Three values have exceeded con-
trol limits and are awaiting verification (manganese in W2 and sulfide in
W40A and W9). In addition, the following significant trends were found
(TDS in W12, W18, W25, W26, W9; Manganese W1l and W46; TOC in
W33). In general, these trends are quite gradual and may reflect changes
in sampling and analytical protocols over the last five to 10 years of the
data record. These results are also consistent with chance expectations
given that we have performed 1120 statistical tests.

. Statistical Power

Statistical power curves for the facility-wide false positive and false neg-
ative rates are presented at the end of each Appendix. For upgradient
versus downgradient comparisons the false positive rate is 61% and the
test becomes sensitive to 3 to 4 standard deviation unit increases over
background. For intra-well comparisons the false positive rate is 83%
and the test becomes semsitive to 2 to 3 standard deviation unit in-
creases over background. This means that there is an 83% chance of
at least one verified exceedance (i.e., for one well and constituent) out
of the 1220 statistical comparisons performed. These high false positive
rates are due to the huge number of comparisons (:.e., 61 wells and 20
constituents} and the fact that some of these wells have quite limited
background databases. These estimates were, however, based only on
those wells and constituents that had a minimum of eight background
samples.

. VOCs

Inspection of Table 1 in Appendix C reveals that there have been a scat-
tered detections of bis(2-ethylkexyl)phthalate in both upgradient and
downgradient wells. 2,4 ,6-trichlorophenol has also been occasionally de-
tected, however, there are no clear trends or consistent detections of
VOCs in any well.

. Proposed Statistical Methods

Specifically, we propose the following:
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(a) Intra-well comparisons using combined Shewart-CUSUM control
charts will be performed for all wells and constituents.

(b) For new sells, background will be obtained using an accelerated
sampling plan of quarterly sampling for a period of two years. In
the interim, new monitoring measurements for those wells with less
than eight background samples will be compared to upgradient pre-
diction limits.

(c) Every two years all data that are within control limits will be pooled
with background and control limits will be recomputed.

(d) Intra-well comparisons will also be computed for the upgradient
wells to insure that increasing trends are not due to regional or
climactic fluctuations.

(e) Nonparametric prediction limits will be used for those wells and
constituents that have detection frequency less than 25%.

(f) New leachate data will be obtained, and leachate concentrations
will be compared to upgradient prediction limits. At a later date,
we will propose to remove any constituent that is not significantly
higher in leachate relative to upgradient ground water.

7. Summary

There were several exceedances of upgradient limits for manganese, two
for sulfide and two for TSS. The absence of clear historical trends in
these wells for these constituents and the absence of VOCs suggest that
these differences are due to spatial variabilitv and not an impact from
the site. Indeed, there is considerable spatial variability in manganese
levels among the four upgradient wells (see Table 1 Appendix A). Intra-
well comparisons revealed a single verified exceedance of manganese in
well W39 which is also above upgradient limits. Three values have ex-
ceeded control limits and are awaiting verification (manganese in W2 and
sulfide in W40A and W9). In light of these results, intra-well compar-
isons are recommended for routine monitoring at this facility. Statistical
power analysis based on site specific conditions indicate that the current
site-wide false positive rate is much too high (approximately an 80%
chance of a verified exceedance of at least one out of 1220 statistical
comparisons). To reduce this false positive rate to a reasonable level,
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a minimum of 8 background samples in each well are required and the
number of statistical comparisons should be reduced. The best way to
accomplish the latter goal is to reduce the number of monitoring con-
stituents used in the statistical evaluation by selecting a subset that are
high in the facility’s leachate relative to their concentration in upgradient
wells. New leachate data are being collected and a reduced monitoring
list of leachate indicator constituents will be proposed.
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